
Le paquetage makegobbler v0.3 (2025-11-29)

Vincent Belaïche

12 décembre 2025

Table des matières
1 Introduction 2

2 Usage et limitations 2
2.1 Motivations . 2
2.2 Limitations de makegobbler . 4

3 Options du paquetage 5

4 Interface utilisateur 5
4.1 Macros pour un gobage ou dégobage conditionnel 5
4.2 Macros pour un gobage ou dégobage inconditionnel 6

5 Le code 7
5.1 Options du paquetage . 7
5.2 Interface utilisateur . 8

5.2.1 Macros de gobage/dégobage conditionnel 8
5.2.2 Macros de gobage/dégobage inconditionnel 8

5.3 Gestion des crochets de fin de traitement 9
5.4 Gestion de la pile de macros crochet 10
5.5 Gobage/dégobage dans le cas d’une condition à la TEX 11
5.6 Gobage/dégobage dans le cas d’une condition à la LATEX 11
5.7 Macros auxliaires de \MGB@g . 12

Liste des exemples
1 Exemple introductif . 2
2 Gobage conditionnel classique à la TEX 2
3 Gobage conditionnel classique à la LATEX 2
4 Limitation d’\ifthenelse avec des caractères spéciaux 3
5 Caractères spéciaux avec une condition à la TEX 3
6 Limitations d’\if. 4

1

1 Introduction
Le but du paquetage makegobbler et de faciliter l’omission conditionnelle d’une

portion de document. Un exemple valant mieux qu’un long discours :

\newif\ifgarde
...
\MGBkeep*\ifgarde
\LaMacroQuiGobeTout
Bla Bla bla, texte inséré conditionnellement seulement si
\gardetrue.
\LaMacroQuiGobeTout

Exemple 1 – Exemple introductif

Dans l’exemple ci-dessus la macro \LaMacroQuiGobeTout est ci-après dési-
gné par délimiteur, et on peut utiliser n’importe quel nom ⟨délimiteur⟩ de macro
\⟨délimiteur⟩ aux lieux de \LaMacroQuiGobeTout. Dans le cas où \conditionfalse
tout ce qui est entre les deux \⟨délimiteur⟩s est supprimé (gobé), et dans le cas
inverse, quand \conditiontrue, c’est conservé (dégobé).
Dans le premier cas, le premier \⟨délimiteur⟩ est défini comme une macro de
gobage, ou gobeur, gobant tout jusqu’à une marque de fin qui est le second
\⟨délimiteur⟩ vu comme une string 1, et c’est la raison du nom makegobbler du
paquetage, parce qu’il fait du premier \⟨délimiteur⟩ un gobeur.

2 Usage et limitations
2.1 Motivations

Le paquetage makegobbler n’est pas fait pour remplacer les constructions
conditionnelles de TEX du genre de :

\newcommand*\Un{2}%
...
\ifnum\Un=1 C’est un\else C’est deux\fi

Exemple 2 – Gobage conditionnel classique à la TEX

ni plus la macro \ifthenelse du paquetage LATEX ifthen qu’on peut utiliser
ainsi :

\newcommand*\Un{2}%
...
\ifthenelse{\Un=1}{C’est un}{C’est deux}

Exemple 3 – Gobage conditionnel classique à la LATEX

1. string en LATEX signifie une chaîne d’unités lexicales qui sont des caractères de catcode
other ou space, dans le cas de makegobbler le \⟨délimiteur⟩ de fin ne comprend que des caractères
de catcode other.

2

bien au contraire, makegobbler s’appuie justement sur ces constructions pour
tester les conditions de gobage ou dégobage, et son objectif est plutôt de pallier
certaines limitations du gobage effectué par ces méthodes classiques. L’exemple 4
illustre 2 cela : si vous décommentez le \alternativetrue il produit une erreur
You can’t use ‘macro parameter character #’ in horizontal mode..

\newif\ifalternative
%\alternativetrue
...
Viens petite fille dans mon comic strip
...
\ifthenelse{\boolean{alternative}}{\verb+#!+}{SHEBAM !} POW !
BLOP ! WIZZ !

Exemple 4 – Limitation d’\ifthenelse avec des caractères spéciaux

Cela se produit parce que \verb fonctionne en changement le régime de catcode
de ce qui suit, mais pour que cela fonctionne il faut que \verb soit exécuté 3. Or
si on passe \verb+#!+ en argument à \ifthenelse le catcode de # est fixé au
moment de la capture de l’argument, car celle-ci impose de passer le premier
étage 4 de TEX, celui qui convertit les caractères en unités lexicales, et donc #
conserve son catcode initial 6 (qui veut dire argument de macro) et \verb n’y
pourra rien changer.

Le paquetage makegobbler résout le problème de l’exemple 4 parce que les
sections dégobées ne sont pas passées en argument de macro, et d’ailleurs pour la
même raison l’utilisation d’une condition à la TEX aurait aussi résolu le problème,
comme dans l’exemple 5 ci-dessous :

\newif\ifalternative
\alternativetrue
...
Viens petite fille dans mon comic strip
...
\ifalternative\verb+#!+\else SHEBAM !\fi\space POW ! BLOP ! WIZZ !

Exemple 5 – Caractères spéciaux avec une condition à la TEX

Bien sûr dans ces exemples simplistes il aurait suffit d’écrire \texttt{\#!} au
lieu de \verb+#!+ et cela aurait aussi fonctionné, mais le prix de cela est d’écrire
un code moins lisible.

Utiliser des conditions à la TEX n’est toutefois pas une solution ultime, en
effet il reste des cas qui ne fonctionnent pas même avec les conditions à la TEX,
l’exemple 6 en illustre un :

2. Aux non-francophones, c’est extrait des paroles de la chanson Comic strip de Serge
Gainsbourg, la drôlerie des paroles vient qu’en franglais strip n’est connu que dans son sens
dévêtir et non dans son sens bande.

3. Le deuxième étage de TEX, c-à-d. la gueule du lion.
4. les yeux du lion.

3

\newif\ifok
\oktrue
...
\ifok À minuit les carrosses redeviennent des
c\verb+\iftrue+illes.\fi

Exemple 6 – Limitations d’\if. . .

Si vous mettez en commentaire le \oktrue alors il y aura une erreur de compi-
lation Incomplete \iffalse; all text was ignored after line ... La rai-
son pour laquelle cela échoue est que le \ifok pour gober tout ce qui suit jusqu’au
\fi suivant teste tout de même s’il y a des unités lexicales de type \if. . . , de sorte
à tomber sur le bon délimiteur de fin \fi. En faisant cela il considère par erreur
que le \iftrue qui est passé dans \verb+...+ attend un \fi, et donc il considère
que le \fi suivant correspond à ce \iftrue et non à \ifok.

Avec makegobbler ce problème est résolu parce que l’utilisateur donne un déli-
miteur \⟨délimiteur⟩ arbitraire, et donc en cas de gobage avec imbrications de plu-
sieurs sections en gobage/dégobage conditionnels il suffit d’utiliser un \⟨délimiteur⟩
propre à chaque niveau d’imbrication.

Dans cette rubrique j’ai surtout mentionné les problèmes qu’on peut avoir avec
\verb que vous n’utilisez peut-être jamais. Sachez que c’est loin d’être le seul cas,
et que toutes macros ou environnements qui jouent avec le régime de catcode sont
sujets aux mêmes types de limitations, et d’ailleurs les questions posées par les
débutants sur les forums ne concernent pas rarement la survenue de cette famille
de problèmes. Notons pas exemple 5 que :

– \includegraphics avec les paquetages graphicx,grffile est capable de
traiter correctement certains caractères spéciaux, comme par ex. ˜, au sein
d’un nom de fichier en changeant son régime de catcode,

– \href et \url du paquetage hyperref sont également concernés pour traiter
correctement certains caractères spéciaux au sein d’urls, ou encore

– l’environnement lstlisting et la macro \lstinline de l’excellent paque-
tage listings, par exemple avec un listing en langage C on peut avoir ty-
piquement des directives préprocesseur #if CONDITION qui poseraient pro-
blème si vous essayez de les dégober avec \ifthenelse.

2.2 Limitations de makegobbler

Si vous avez lu attentivement la rubrique §2.1 alors vous savez déjà qu’utiliser
les macros de makegobbler au sein d’un argument de macro est voué à l’échec :
comme \verb les macros de makegobbler jouent avec les catcodes, et donc pro-
duisent le même type de limitations.

Au sein de la plupart des environnements, cela au contraire va fonctionner. Et
d’ailleurs si cela ne fonctionnait pas au sein de l’environnement document, alors
le paquetage serait inutilisable. Toutefois avec certains environnements cela ne
fonctionnera pas. En effet un environnement ⟨env⟩ peut-être de deux types :

– soit c’est un environnement fil-de-l’eau, dans ce cas le \begin{⟨env ⟩} et
sa contrepartie \end{⟨env ⟩} sont juste comme deux macros qui activent et

5. Cette liste n’est en aucun cas exhaustive.

4

désactivent certaines conditions de traitement de ce qu’il y a entre les deux,
par exemple la police, ou bien le régime de catcode ou encore le paramétrage
de formation de paragraphes,

– soit c’est un environnement aspirant, cela signifie que tout ce qui se trouve
entre \begin{⟨env ⟩} et \end{⟨env ⟩} est préalablement aspiré comme si
c’était l’argument d’une macro de sorte à avoir une liste d’unités lexicales,
et qu’ensuite cette liste est post-traitée.

Les macros de makegobbler ne vont donc fonctionner correctement pour go-
ber/dégober des sections de code entre \begin{⟨env ⟩} et \end{⟨env ⟩} que si
⟨env⟩ est un environnement fil-de-l-eau, mais elles ne fonctionneront pas avec un
environnement aspirant, puisqu’on se retrouve dans la même situation que si le
code était au sein d’un argument de macro. Voici quelques environnements aspi-
rants :

– la plupart des environnements du paquetage amsmath,
– tous les environnements créés avec la macro \NewEnviron du paquetage
environ, et

– l’environnement frame de la classe beamer, sauf dans le cas où il reçoit
l’argument optionnel fragile.

3 Options du paquetage
Le paquetage a deux options :

ifthen Juste une commodité pour charger le paquetage ifthen, ceci est nécessaire
pour utiliser les macros de (dé)gobage conditionnel avec une condition à la
LATEX.

tense Ne pas utiliser sauf si vous savez ce que vous faites. Voir la documentation
du code.

4 Interface utilisateur
4.1 Macros pour un gobage ou dégobage conditionnel

Le paquetage offre quatre macros pour le (dé)gobage conditionnel d’un bout
de code LATEX : \MGBkeep, \MGBdrop, \MGBkeepelse, et \MGBdropelse. Les deux
premières utilisent deux \⟨délimiteur⟩s, et les deux dernières trois.

Chacune de ses macros a pour premier argument une condition. La syntaxe est
la suivante :

\MGBkeep⟨étoile ⟩⟨condition ⟩\⟨délimiteur ⟩
⟨dégobé ⟩

\⟨délimiteur ⟩

⟨dégobé⟩ peut être n’importe quoi entre les deux \⟨délmiteur⟩s, et il est dégobé
si ⟨condition⟩ est vraie, et gobé sinon. Avec \MGBdrop c’est le contraire, la condition
de débogage est 6 ¬⟨condition⟩.

Avec les deux autres macros, \MGBkeepelse et \MGBdropelse, on a deux
branches, l’une contenant ⟨gobé⟩ et l’autre ⟨dégobé⟩ :

6. «¬C» signifie «non C».

5

\MGBkeepelse⟨étoile ⟩⟨condition ⟩\⟨délimiteur ⟩
⟨dégobé ⟩

\⟨délimiteur ⟩
⟨gobé ⟩

\⟨délimiteur ⟩

Dans ce cas si ⟨condition⟩ est vraie, ⟨dégobé⟩ est dégobé, et ⟨gobé⟩ est gobé,
et sinon, si ⟨condition⟩ est faux, c’est le contraire. En utilisant \MGBdropelse, la
branche ⟨gobé⟩ correspondant au gobage sous ⟨condition⟩ est donnée en premier,
et celle ⟨dégobé⟩ correspondant au dégobage en second.

\MGBdropelse⟨étoile ⟩⟨condition ⟩\⟨délimiteur ⟩
⟨gobé ⟩

\⟨délimiteur ⟩
⟨dégobé ⟩

\⟨délimiteur ⟩

⟨étoile⟩ peut être soit * soit vide, dans le premier cas on dit que la macro
est étoilée, et dans le second qu’elle est non-étoilée. Si la macro est non-étoilée,
alors la condition est une condition à la LATEX, c’est à dire une condition telle que
la prend en premier argument la macro \ifthenelse du paquetage ifthen, par
exemple 7 {\boolean{true}} ou {\equal{⟨chaîne 1 ⟩}{⟨chaîne 2 ⟩}}. Se reporter
à la documentation de ce paquetage pour plus ample information. Avec les formes
non étoilées il faut donc que le paquetage ifthen ait été chargé, ce que vous pouvez
faire en passant l’option ifthen à makeglobber.

Avec la forme étoilée, le premier argument doit être une condition à la TEX,
c’est à dire :

– soit une condition 8 \iftoto qui est instanciée avec une commande \newif\iftoto
et qui peut être commutée avec les macros \totofalse et \tototrue,

– soit une condition qui utilise l’un des opérateurs de branchement conditionnel
prédéfini dans TEX, par ex. \ifmmode, {\ifnum⟨a⟩=⟨b⟩␣}, {\ifx\⟨a⟩\⟨b⟩},
etc. Notez que dans les cas où ⟨condition⟩ consiste en plusieurs unités lexi-
cales il faut 9 l’écrire entre accolades.

4.2 Macros pour un gobage ou dégobage inconditionnel
Le paquetage fournit également deux macros de plus bas niveau \makegobbler

et \makeungobbler qu’en général l’utilisateur λ n’a pas besoin d’utiliser directe-
ment, et qui servent respectivement au gobage et au dégobage inconditionnel d’un
bout de code LATEX.

Je décris ci-après ci-après ces deux macros parce qu’elles constituent le méca-
nisme sous-jacent du paquetage, c’est à dire que sous le capot, les macros pour
le gobage et/ou dégobage conditionnel, \MGBkeep, \MGBdrop, \MGBkeepelse, et

7. ⟨condition⟩ correspond à {⟨test⟩} dans le manuel de ifthen.
8. Toto a un cousin anglais complètement foo.
9. Ceci n’a rien à voir avec le paquetage makeglobber, c’est une règle générale de TEX, lorsqu’un

argument de macro consiste en une séquence de plusieurs unités lexicales on le met entre accolades
pour le passer d’un seul tenant à la macro. Lorsque il y a une seule unité lexicale, alors les
accolades sont optionnelles, on peut passer {\iftoto} aussi bien que \iftoto.

6

\MGBdropelse, finissent par se développer, selon la ⟨condition⟩ qui leur est passée,
en un \makegobbler ou un \makeungobbler

Le nom du paquetage provient d’ailleurs de ce que le délimiteur \⟨délimiteur⟩
peut être utilisé avec \makegobbler pour supprimer tout ce qui suit jusqu’au
prochain \⟨délimiteur⟩, comme ci-dessous, où pour l’exemple \⟨délimiteur⟩ est
nommé \LaMacroQuiGobeTout :

\makegobbler\LaMacroQuiGobeTout
Bla Bla bla, tout le texte ici est supprimé.
\LaMacroQuiGobeTout

On appelle cette suppression gobage, et on dit que \LaMacroQuiGobeTout est
un gobeur, la macro \makegobbler sert donc à fabriquer un gobeur du nom de
\LaMacroQuiGobeTout qui va tout gober jusqu’à rencontrer une marque de fin
également nommé \LaMacroQuiGobeTout, sauf que du point de vue catcodique la
première occurrence de \LaMacroQuiGobeTout est une séquence de contrôle, alors
que la seconde est une string, c’est à dire une suite de caractères de catcode
other.

Si on avait utilisé \makeungobbler à la place de \makegobbler alors le texte
aurait été inséré au lieu d’être supprimé :

\makeungobbler\LaMacroQuiGobeTout
Bla Bla bla, tout le texte ici est inséré.
\LaMacroQuiGobeTout

Et donc dans l’exemple ci-dessus on parle de dégobage et on dit que \LaMacroQuiGobeTout
a été définie comme un dégobeur, c’est à dire qu’elle conserve tout ce qui suit jus-
qu’à la prochaine occurrence de \LaMacroQuiGobeTout qui sert de marque de fin,
et que cette marque de fin est supprimée.

Il est à noter que la définition de \⟨délimiteur⟩ comme une macro de go-
bage/dégobage est transitoire. Une fois la marque de fin consommée, \⟨délimiteur⟩
reprend sa valeur initiale si elle en avait une, ou sinon redevient indéfini.

5 Le code
5.1 Options du paquetage

Les déclarations habituelles pour que LATEX connaisse le paquetage.
1 \NeedsTeXFormat{LaTeX2e}[2020/10/01]
2 \ProvidesPackage{makegobbler}
3 [2025-11-29 v0.3 %
4 Gobbling macros maker]

Une option juste pour dire de charger le paquetage ifthen qui permet d’avoir\MGB@process@ifthen@option
des conditions à la LATEX. La macro \MGB@process@ifthen@option sert juste à
faire le \RequirePackage{ifthen} après le \ProcessOptions, c’est à dire qu’on
la développe à cet endroit là. Elle s’autodétruit assitôt sa tâche accomplie, vu
qu’on n’en a plus besoin par la suite.

5 \DeclareOption{ifthen}{\def\MGB@process@ifthen@option
6 {\RequirePackage{ifthen}\let\MGB@process@ifthen@option\@undefined}}

7

Si l’option ifthen n’est pas passée, \MGB@process@ifthen@option ne fait rien
mis à part s’autodétruire.

7 \def\MGB@process@ifthen@option{\let\MGB@process@ifthen@option\@undefined}

N’utilisez pas l’option tense, sauf si vous avez lu et compris le code qui l’utilise,
et si vous recherchez un substitut à la caféine.

8 \newif\ifMGB@tense
9 \DeclareOption{tense}{\MGB@tensetrue}

10 \ProcessOptions*
11 \MGB@process@ifthen@option

5.2 Interface utilisateur
5.2.1 Macros de gobage/dégobage conditionnel

Définition des macros d’interface utilisateur, les quatre définitions ont sensi-\MGBkeep
\MGBdrop

\MGBkeepelse
\MGBdropelse

blement la même gueule parce qu’en premier lieu on ne fait que sélectionner si
on passe une condition à la TEX en étoilant la macro, ou bien à la LATEX en ne
l’étoilant pas.

12 \def\MGBkeep{\MGB@stdhooks\@ifstar{\MGBkeep@tex}{\MGBkeep@latex}}
13 \def\MGBdrop{\MGB@stdhooks\@ifstar{\MGBdrop@tex}{\MGBdrop@latex}}
14 \def\MGBkeepelse{\MGB@elsehooks\@ifstar{\MGBkeep@tex}{\MGBkeep@latex}}
15 \def\MGBdropelse{\MGB@elsehooks\@ifstar{\MGBdrop@tex}{\MGBdrop@latex}}

5.2.2 Macros de gobage/dégobage inconditionnel

Les quatre macros de gobage/dégobage conditionnel sous le capot finissent tôt
ou tard par développer l’une des deux macros de plus bas niveau \MGB@g dans le
cas d’un gobage, ou \MGB@u dans le cas d’un dégobage. Ces deux dernières sont
également accessible depuis l’interface utilisateur, via respetivement les macros
\makeglobber et \makeunglobber, en effet \makeglobber pourrait être utile par
exemple en DocTEX pour gober la section pilote du document .dtx.
Les macros \makegobbler et \makeungobbler délèguent le traitement proprement\makegobbler

\makeungobbler dit de gobage/dégobage à respectivement \MGB@g et \MGB@u avec le préliminaire
de développer en premier lieu \MGB@stdhooks, ce dont on verra l’utilité en § 5.3 :

16 \def\makegobbler{\MGB@stdhooks\MGB@g}%
17 \def\makeungobbler{\MGB@stdhooks\MGB@u}%

La macro \MGB@u a juste pour effet qu’elle gobe le délimiteur, et le définit de sorte\MGB@u
qu’il se redéfinisse à sa valeur initiale. Donc ce qui suit entre les deux délimiteurs
n’est pas gobé.

18 \def\MGB@u#1{\MGB@save@mark#1\def#1{\MGB@ungobblerhook#1}}%

La macro \MGB@g prend en argument une séquence de contrôle \⟨delimiteur⟩,\MGB@g
et gobe tout ce qui suit jusqu’à rencontrer la string \⟨delimiteur⟩ :

19 \def\MGB@g#1{%
20 \MGB@save@mark#1%
21 \begingroup
22 \expandafter\MGB@\expandafter
23 {\string#1}#1\MGB@set@catcoderegime#1}%

8

5.3 Gestion des crochets de fin de traitement
Notez que les deux macros \MGBkeepelse et \MGBdropelse ne se distinguent

respectivement de \MGBkeep et \MGBdrop que par l’insertion de la macro \MGB@elsehooks
au lieu de \MGB@stdhooks. En fait le cœur du réacteur c’est les macros \MGB@g et
\MGB@u. Chacune des ces macros développe en fin de traitement respectivement
une macro crochet \MGB@gobblerhook, resp. \MGB@ungobblerhook, dont la valeur
standarde \MGB@stdhook consiste à finir le traitement.
La macro \MGB@stdhooks règle les définitions de ces deux macros crochet à leur\MGB@stdhooks
valeur standarde, après avoir empilé la valeur courante :

24 \def\MGB@stdhooks{%

Donc en premier lieu, avant de faire ce réglage, elle empile la valeur courante des
macros crochets, ceci permettant de cascader plusieurs niveaux de gobage/dégobage
avec leur \⟨délimiteur⟩ respectifs :

25 \MGB@pushhooks

puis elle fait le réglage proprement dit aux valeurs standardes des crochets en
développant la macro\MGB@standardizehooks :

26 \MGB@standardizehooks
27 }

La macro \MGB@standardizehooks règle les définitions des deux macros crochet\MGB@standardizehooks
à leur valeur standarde, c’est à dire celle qui termine le traitement, ou en d’autres
termes celle qui correspond au fait que le \⟨délimiteur⟩ est le dernier :

28 \def\MGB@standardizehooks{%
29 \let\MGB@gobblerhook\MGB@stdhook
30 \let\MGB@ungobblerhook\MGB@stdhook
31 }

La macro \MGB@elsehooks ne fait que changer les définitions de ces macros crochet\MGB@elsehooks
pour qu’un dégobage soit fait à la suite d’un gobage, ou resp. un gobage à la suite
d’un dégobage, ceci permettant de traiter la branche else.

32 \def\MGB@elsehooks{%

Comme avec \MGB@stdhooks, la première chose qu’on fait c’est d’empiler la valeur
courante des macros crochet, de sorte à pouvoir les dépiler en fin de gobage.

33 \MGB@pushhooks

Donc on règle le crochet de gobage. . .
34 \def\MGB@gobblerhook##1{%

pour tout d’abord écraser les valeurs courantes des crochets de gobage/dégobage
par ls valeur standardes, sans pour autant changer l’état de la pile. . .

35 \MGB@standardizehooks

et ensuite faire un dégobage :
36 \MGB@u##1}%

et pour le crochet de dégobage c’est l’inverse. . .
37 \def\MGB@ungobblerhook##1{%

comme précédement on règle les macros crochet aux valeurs standardes sans chan-
ger l’état de la pile. . .

38 \MGB@standardizehooks

mais ensuite on enchaîne sur un gobage au lieu d’un dégobage :
39 \MGB@g##1}%
40 }

9

La macro \MGB@stdhook est la valeur par défaut des macros crochet, elle finit le\MGB@stdhook
traitement de gobage/dégobage : c’est à dire elle restaure la macro \⟨délimiteur⟩
à sa valeur initiale 10 :

41 \def\MGB@stdhook#1{%
42 \MGB@pophooks
43 {\def\@tempa##1{\let#1##1\let##1\@undefined}%
44 \expandafter\expandafter\expandafter}\expandafter
45 \@tempa\csname MGB@save\string#1\endcsname
46 }%

La restauration se fait à partir d’une sauvegarde faite dans la variable 11 \MGB@save\⟨délimiteur⟩.\MGB@save@mark
La macro \MGB@save@mark sert à effectuer la sauvegarde en début de traitement :

47 \def\MGB@save@mark#1{%
48 \expandafter\let\csname MGB@save\string#1\endcsname#1}%

5.4 Gestion de la pile de macros crochet
La macro \MGB@hook@sd est un compteur qui donne la profondeur dans la pile\MGB@hook@sd

de macros crochet (sd = «stack depth») :
49 \newcount\MGB@hook@sd

La macro \MGB@pushhooks sert à empiler la valeur courante des macros crochet :\MGB@pushhooks
50 \def\MGB@pushhooks{%
51 \expandafter\let\csname MGB@ghookstack\the\MGB@hook@sd\endcsname\MGB@gobblerhook
52 \expandafter\let\csname MGB@uhookstack\the\MGB@hook@sd\endcsname\MGB@ungobblerhook
53 \advance\MGB@hook@sd\@ne
54 }

La macro \MGB@pophooks sert à dépiler les valeurs des macros crochet de sorte à\MGB@pophooks
restituer les valeurs avant le dernier empilement :

55 \def\MGB@pophooks{%
56 \advance\MGB@hook@sd\m@ne
57 \expandafter\let\expandafter\MGB@gobblerhook
58 \csname MGB@ghookstack\the\MGB@hook@sd\endcsname
59 \expandafter\let\expandafter\MGB@ungobblerhook
60 \csname MGB@uhookstack\the\MGB@hook@sd\endcsname
61 }

Touche finale de la gestion de la pile, les macros crochet de gobage/dégobage
sont initialisées pour produire une erreur indiquant un épuisement de la pile 12.
En effet, si on ne fait pas cela, et que par malheur survient une situation où
se produit un dépilement de plus que d’empilements, alors on aura un message
d’erreur abscons indiquant soit que \MGB@gobblerhook n’est pas définie, soit que
c’est \MGB@ungobblerhook qui n’est pas définie. Avec les initialisations suivantes,
dans une telle situation au lieu de cela on a un message d’erreur beaucoup plus
explicite :

62 \def\MGB@gobblerhook#1{%
63 \PackageError{makegobbler}{\’Epuisement pile macros crochet}{%
64 Une erreur a produit un d\’epilage de plus que d’empilage.%
65 }
66 }
67 \let\MGB@ungobblerhook\MGB@gobblerhook

10. Sa valeur avant gobage (\MGB@g) ou dégobage (\MGB@u).
11. La deuxième contr’oblique est une lettre.
12. «stack underflow» en langue anglaise

10

5.5 Gobage/dégobage dans le cas d’une condition à la TEX
On commence par le gros morceau, le cas des conditions à la TEX. En fait on\MGBkeep@tex

\MGBdrop@tex veut grosso modo que \MGBkeep*\ifcondition se développe en :
\ifcondition
⟨couic⟩
\expandafter\MGB@u

\else
\expandafter\MGB@g

\fi
Dans le cas de \MGBdrop c’est juste l’ordre de \MGB@u et \MGB@g qui est inversé.
Comme c’est un peu coton de mettre en clair un \else ou un \fi dans un corps de
macro sans qu’il n’y ait \ifcondition également en clair, on va passer le \else et
le \fi via des registres toks pour qu’ils ne soient pas en clair. Pour faire ça on se
place au sein d’un groupe, et le boulot sera fait via une macro \@tempa développée
en after-group.

68 \begingroup
Au fait, \ifcondition ça peut être n’importe quelle condition à la TEX, par
exemple \ifnum⟨a⟩=⟨b⟩␣. Du coup pour éviter qu’au cas où l’utilisateur oublierait
l’espace 13 juste après le ⟨b⟩ et où donc la branche vraie serait intempestivement
développée entrainant une erreur de type \else sans \if, on insère en général
un \relax après le \ifcondition, sauf pour les utilisateurs qui aiment vivre
dangereusement et ont passé l’option tense au paquetage. Donc en général \toks0
contient \relax, sauf si l’option tense et passée, auquel cas il est vide.

69 \edef\@tempa{\toks0{\ifMGB@tense\else\relax\fi}}\@tempa
\toks1 contient \else, et

70 \toks1\expandafter{\csname else\endcsname}%
\toks2 contient \fi.

71 \toks2\expandafter{\csname fi\endcsname}%
Et maintenant on définit \MGBkeep@tex, et \MGBdrop@tex dans une macro \@tempa
développée en after-group.

72 \edef\@tempa{%
73 \def\noexpand\MGBkeep@tex##1{##1\the\toks0
74 \noexpand\expandafter\noexpand\MGB@u
75 \the\toks1
76 \noexpand\expandafter\noexpand\MGB@g
77 \the\toks2
78 }%
79 \def\noexpand\MGBdrop@tex##1{##1\the\toks0
80 \noexpand\expandafter\noexpand\MGB@g
81 \the\toks1
82 \noexpand\expandafter\noexpand\MGB@u
83 \the\toks2
84 }%
85 }%
86 \expandafter\endgroup\@tempa

5.6 Gobage/dégobage dans le cas d’une condition à la LATEX
Le cas des conditions à la LATEX est beaucoup plus simple à traiter. En fait on\MGBkeep@latex

\MGBdrop@latex 13. Cet espace fait partie du nombre et ne génère pas une espace dans le texte.

11

veut grosso modo que \MGBkeep{⟨condition⟩} se développe en :
\ifthenelse{⟨condition⟩}{%
\MGB@u}{%
\MGB@g}

Pour développer \MGB@u si ⟨condition⟩ est vraie, ou \MGB@g sinon. Et pour \MGBdrop
c’est l’inverse, ce qu’on obtient en intervertissant \MGB@u et \MGB@g.

87 \def\MGBkeep@latex#1{\ifthenelse{#1}{\MGB@u}{\MGB@g}}
88 \def\MGBdrop@latex#1{\ifthenelse{#1}{\MGB@g}{\MGB@u}}

5.7 Macros auxliaires de \MGB@g

\MGB@set@catcoderegime
La macro \MGB@set@catcoderegime sert à changer le régime de catcode pour que
dans le cas du gobage, tout ce qui est gobé soit pris verbatim.

89 \def\MGB@set@catcoderegime{%
90 \catcode35=12
91 \catcode123=12
92 \catcode125=12
93 \catcode37=12
94 \catcode92=12
95 }

La macro \MGB@otherize change le catcode de chacun des caractères du délimiteur\MGB@otherize
en other. C’est pour que le délimiteur soit bien reconnu comme marque de fin.

96 \def\MGB@otherize#1{%
97 \def\@tempa{#1}%
98 \ifx\@tempa\@nnil\else
99 \catcode‘#1=12

100 \expandafter\MGB@otherize
101 \fi
102 }

La macro \MGB@ est l’auxiliaire de \MGB@g, elle prend deux arguments :\MGB@
#1 Le délimiteur en tant que string
#2 Le délimiteur en tant que séquence de contrôle

103 \def\MGB@#1#2{\MGB@otherize#1\@nil\long\def#2##1#1{\endgroup
104 \MGB@gobblerhook#2}}%

E finita la comedia !
105 \endinput

12

	Table des matières
	Liste des exemples
	1 Introduction
	2 Usage et limitations
	2.1 Motivations
	2.2 Limitations de makegobbler

	3 Options du paquetage
	4 Interface utilisateur
	4.1 Macros pour un gobage ou dégobage conditionnel
	4.2 Macros pour un gobage ou dégobage inconditionnel

	5 Le code
	5.1 Options du paquetage
	5.2 Interface utilisateur
	5.2.1 Macros de gobage/dégobage conditionnel
	5.2.2 Macros de gobage/dégobage inconditionnel

	5.3 Gestion des crochets de fin de traitement
	5.4 Gestion de la pile de macros crochet
	5.5 Gobage/dégobage dans le cas d'une condition à la TeX
	5.6 Gobage/dégobage dans le cas d'une condition à la LaTeX
	5.7 Macros auxliaires de \MGB@g

